SMITHS CAR CLOCK REPAIR KIT
Version 7
Introduction

These instructions explain how to repair a Smith’s electric car clock mechanism using the Clocks4Classics repair kit. This kit uses a specially developed printed circuit board to replace the balance wheel contacts which are the usual cause of failure in these clocks. The Clocks4Classics kit is unique in that it uses a solid state sensor and microcontroller chip to replace the contacts thus providing a permanent repair.

The instructions are based around the repair of a Jaguar Mk2 clock, however, many other vehicles use the same Smiths mechanism and the Clocks4 Classics kit can also be used to repair these clocks. In most cases the basic fitting method will be very similar although the removal of the case and dial mechanisms may differ. Please note that for some clocks (e.g. MG Magnette) it is necessary to remove the hands in order to gain access to the mechanism.

Examples of clocks which have been successfully repaired using the Clocks4Classics kit include:

- Jaguar Mk 2
- Jaguar E-Type (Ser 1)
- Daimler V8 Saloon
- XK140
- Jaguar Mk IV
- Alvis TD21
- MG Magnette
Kit Contents

- Printed Circuit board with Microcontroller and Infra red sensor
- Brass spacer
- Balance wheel sticker
- Heat shrink sleeving
Things you will need

For fitting the Circuit board:
- Jewellers screwdrivers
- Small pair of long nosed pliers (electronics type)
- Wire strippers
- Small pair of wire cutters (electronics type)
- Hair dryer or heat gun (for shrinking the heat-shrink sleeving)
- Junior hacksaw and file (for modifying connector bracket)

For cleaning & Oiling:
- Clock oil
- Cocktail sticks
- Isopropyl alcohol (available from computer and camera shops etc).
General Notes

- As with any electronic parts, it is important to take anti-static precautions when handling the printed circuit board (PCB). Avoid contact with objects which build up static such as nylon clothing or carpets. Avoid touching the components on the PCB directly. Before working on the PCB discharge yourself by touching a metal water-pipe, radiator pipe or similar.
Cleaning and Oiling

• It is recommended that you use this opportunity to clean the mechanism of your clock. This will help to ensure correct operation and will extend the life of the mechanism. Parts can be cleaned in isopropyl alcohol. Bearings should be cleaned out very carefully using isopropyl and a cocktail stick. Take particular care with the two jewelled bearings.

• Once you have cleaned your clock you can oil the bearings with a very small amount of clock oil. This is best applied using a pin or thin piece of wire. For the jewelled bearings the aim should be to use just enough oil to fill the dip in the bearing. Do not be tempted to use any oil other than other clock oil. Do not oil the gear trains.
PCB Polarity

Positive Earth PCB
(Resistors fitted in 1st and 3rd positions from top)

Negative Earth PCB
(Resistors fitted in 2nd and 4th positions from top)

Before Fitting your PCB, please check that you have the correct polarity for your vehicle (i.e. positive or negative earth). This is determined by the position of two resistors on the circuit board as shown in the pictures above. Please contact Clocks4Classics if you have the wrong polarity for your vehicle.
1. Remove small screw (a)

2. Loosen small screw (b) and swing fuse to one side.

3. Remove 4 case securing screws (c) and slide case backwards off mechanism.
Lift off back-plate to leave mechanism as shown
Remove 4 (sometimes 6) screws securing front dial mechanism.

(NB. If screws will not move do not use force. Apply cellulose thinners to the screw heads and leave for a few hours to loosen paint around screw heads.)
1. Lift off Front Dial mechanism.
2. Lift off Gear Wheel
Remove 2 solenoid retaining pillars
1. Lift Solenoid from mechanism.

2. Snip solenoid wires leaving as much wire as possible attached to solenoid.
1. Remove two nuts securing balance support.

2. Remove Insulating sleeve from connector bracket.
Carefully lift off the balance support and balance wheel assembly taking care not to damage the hair spring.

[**NB.** On some clocks (e.g. Jaguar Mk IV, XK140), there is an adjustment gear on the top of the balance support which prevents removal of the balance wheel assembly. In these cases this gear must be removed – please see slide labelled “Removal of Adjustment Gear” at the end of these instructions.]
Undo connector bracket retainer screw and remove connector bracket and plastic connector bracket support. Note that the plastic connector bracket support is no-longer required and should not be refitted.
Undo contact pillar retaining screw and remove contact pillar, upper insulating plate, contacts (not shown) and insulating ‘O’ rings.

NB: Contacts, contact pillar and insulating ‘O’ rings are no longer required and should not be refitted.
Remove connector pillar (with insulating tube) and lower insulating plate.
Modify connector bracket by removing side `ear' as shown.
Fit BOTH insulating plates (upper and lower) to connector pillar and insert into clock baseplate from front. Ensure that insulating tube is in place around connector pillar.
1. Position PCB on clock base plate as shown with hole over connector pillar.

2. Fit brass spacer (supplied) over connector pillar.
Place the connector bracket on top of the brass spacer and secure the bracket to the connector pillar with the retaining screw. Make sure that the curved edge of the PCB lines up closely with the clock baseplate (arrowed).
Use a sharp craft knife to cut out one of the balance wheel stickers from the sheet (the sheet includes 2 spares). Leave a small ‘tab’ on the edge of the sticker to help with removing the backing when fitting. This tab can also be used to help hold the sticker when positioning it on the balance wheel. The tab can be trimmed off once the sticker is fitted.
Carefully clean underside of balance wheel with Isopropyl alcohol and a Q-tip. Peel the backing off the sticker, position it on the underside of the balance wheel and smooth down carefully. The sticker should be positioned so that the balance wheel pin is close to the black stripe and the alignment marks (circled) line up with edge of balance wheel segments on opposite side of balance wheel. If any parts of the sticker overhang the edge of the balance wheel carefully trim these with a sharp craft knife.
Carefully re-fit the balance wheel taking care not to damage the jewelled bearings.

When the balance wheel is at rest, the black marker stripe should sit just a little clockwise of the sensor (when viewed from the sensor side of the balance wheel). If the marker stripe does not appear to be in the correct place, check that the label is correctly applied and then check the at-rest position of the balance wheel (see next slide).
The above diagram shows the at-rest position of balance wheel. Note that this is factory set and should NOT need to be adjusted. The exact measurement of 0.75 mm is not critical but the balance wheel should be slightly offset from the symmetrical (as shown). If the position is clearly wrong, it can be adjusted by gently turning the balance wheel whilst holding the hairspring collet still by using a jeweller’s screwdriver in the slit of the collet.
Strip approx. 3mm from the ends of each solenoid wire. If the yellow tape around the solenoid body looks worn, wrap this with a couple of turns of new insulation tape. Be careful not to flex or pull on the wires as this can break the connection inside the solenoid (if the wires look loose where they enter the body of the solenoid it is a good idea to secure them with some hot melt or epoxy glue).
1. Fit insulating sleeve over connector bracket.

2. Re-fit the solenoid and screw solenoid retaining pillars into place. Place two pieces of heat-shrink over solenoid wires and carefully push the two solenoid wires into the socket posts as shown.

NB. Do not shrink heat-shrink tubing until mechanism has been tested (see later slide)
If the top of the plastic insulating sleeve is damaged, cover the damaged part with the heat-shrink sleeving supplied and use a hair dryer or heat gun to shrink the sleeving over the plastic insulating sleeve.
Testing the movement

At this point it is a good idea to test the operation of the movement. Connect the clock to a **fused** 12V battery supply (For negative earth cars connect the `+` terminal to the connector bracket and the `–` terminal to the body of the clock. For positive earth cars connect the `–` terminal to the connector bracket and the `+` terminal to the body of the clock)

The balance wheel should first move to a starting position and remain there for approximately 3 seconds. Following this it should start to oscillate back and forth. The amplitude of oscillation will build up over a minute or so until the wheel is oscillating steadily.

If the balance wheel does not oscillate please see the trouble shooting section at the end of these instructions.
Push heat-shrink tubing down over socket posts and then use a hairdryer or heat gun to shrink the tubing over the posts. Be careful not to use too much heat as this may melt the insulation on the wires.

Tip: A pair of tweezers can be useful to tease the heat-shrink tubing over the socket posts.
Re-fit gear wheel
1. Fit front dial mechanism being careful that hands align correctly (check alignment at 12 o'clock position).

2. Re fit back plate to rear of clock
Refit case and 4 retaining screws. Ensure screw with threaded hole is in position shown.

Refit fused link and tighten both screws
Adjusting the Clock

Before fitting the clock to the car you should adjust the timekeeping using the regulator screw on the back of the case.

First set up the clock on the bench in its normal orientation and connect it to a fused 12V supply (e.g. an old car or motorcycle battery).

Allow the clock to run for an hour or so before attempting any adjustments.

Turning the screw anticlockwise makes the clock run faster, turning it clockwise makes it run slower.

Be aware that the adjustment is quite sensitive – small movements of the screw can make a big difference.

Bear in mind that this is still a mechanical movement and will be affected by temperature etc.

NB. There is often quite a lot of backlash in the dial mechanism so it can take some time for the mechanism to `catch up` before the hands begin to move. The best way to overcome this is simply to set the hands a couple of minutes fast when first setting the clock.
<table>
<thead>
<tr>
<th>#</th>
<th>Symptom</th>
<th>Possible Cause</th>
<th>Investigations / Actions</th>
</tr>
</thead>
</table>
| 1 | Balance wheel does not move when 12V supply is connected. | 12V Supply not correctly connected | Check that the connections to clock are clean and secure
Check that the 12V fuse to the clock has not blown
Use a voltmeter or test bulb to check that 12V is present at the supply to the clock.
Check that the polarity of the 12V supply is correct.
Check that the clock case is earthed (ring terminal on clock mounting screw)
Check that the fused link on the back of the clock case is in place. |
| | | Bad connection to clock solenoid | Check that wires to the solenoid are fully pushed home into the connectors on the PCB. |
| | | Balance wheel stuck | Check that the balance wheel can move freely. If not check that it is correctly located in its bearings and is not touching any other part of the mechanism. |
| | | Solenoid Pole pieces bent | Check that the pole pieces (the flat strips of metal which stick out of the solenoid coil) are not bent. If necessary, gently bend them back into place. |
| | | Solenoid Coil Broken | If all of the above points are OK then it is possible that the solenoid coil has failed. This is unusual but can happen if the wires to the solenoid have been stressed.
If you have a multimeter you can check the resistance of the solenoid which should be around 850 Ohms.
Damaged solenoid coils can often be repaired – please ask for details. |
| 2 | Balance wheel moves when 12V supply is first applied but does not oscillate. | Bright light on Sensor | Bright light can affect the operation of the sensor when testing the mechanism. Normal indoor lighting is normally fine but bright lights or florescent lights can cause a problem.
This is not a problem when the clock is in its case but it may be necessary to move the mechanism to a more shaded area for testing. |
<p>| | | Dirt or grease on Sensor | Clean sensor with Isopropyl alcohol or similar |
| | | Balance wheel sticker incorrectly positioned | Check that the balance wheel sticker is in the correct position (see earlier slide). If necessary remove the sticker and apply one of the spare stickers in the correct position. |
| | | Balance Wheel At-Rest position incorrect | See slide on checking and adjusting balance wheel At-Rest position |
| | | Clock hands touching | Check that the hands of the clock have not become bent so that they are touching each other. If necessary, use a cocktail stick to gently bend the hands away from each other. |
| | | Excess Friction | See under “Excess Friction” below |</p>
<table>
<thead>
<tr>
<th>#</th>
<th>Symptom</th>
<th>Possible Cause</th>
<th>Investigations / Actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Balance wheel starts to oscillate but stops after a short time</td>
<td>Excess Friction due to damper spring
The damper spring is the thin leaf spring which bears on the transverse wheel shaft. This is shown in the photo below. Use a cocktail stick or jeweller’s screwdriver to gently lift the damper spring away from the shaft. Do not lift the spring too far as it is easily broken. If the clock then runs the underside of damper spring may be dirty or rusty. You can clean the damper spring by carefully slipping a piece of very fine wet and dry paper between the spring and the shaft (with the abrasive towards the spring) and pulling it free.
If this does not cure the problem then it may be necessary to bend the spring slightly so that it puts less pressure on the shaft. To do this grip the spring with a pair of tweezers and gently twist the tweezers anti clockwise (i.e. towards the fixing point of the spring). The object is to lessen the friction due to the damper spring but it should still touch the shaft.</td>
<td>Remove the dial from the clock – if the clock then runs the problem is due to friction in the dial mechanism – clean the shaft etc. with isopropyl alcohol.</td>
</tr>
<tr>
<td>4</td>
<td>Clock runs too fast or too slow (and cannot be adjusted to run correctly)</td>
<td>Hair spring coils stuck together.
If the clock is running much too fast, check that the hair-spring coils are not stuck together – if they are clean the hair-spring with isopropyl alcohol.</td>
<td>See under “Excess Friction” above</td>
</tr>
</tbody>
</table>
Troubleshooting - continued

Photo showing location of damper spring and transverse gear shaft
Removal of Adjustment Gear

Some clocks (e.g. Jaguar Mk IV, XK140) have an adjustment gear on top of the balance support which prevents removal of the balance wheel mechanism.

The gear can be removed by using two Jeweller’s screwdrivers to gently lever between the gear and the balance support. Lever very gently using both screwdrivers simultaneously with the screwdrivers positioned opposite each other. Periodically rotate the gear wheel so that the force evens out around the gear. Sometimes the top of the shaft is peened over in which case it will be necessary to use a needle file to remove the peening prior to removing the gear.

To replace the gear press it back on making sure that the bottom of the shaft is well supported; this can be done using a small vice or G-Clamp; again, be very gentle and use some packing to protect the shaft. Replacing the gear will be made easier if you gently warm it first so that the hole expands slightly. Before removing the gear take note of which way up it fits – the upper side is slightly curved.